题目内容

已知向量
a
=(cosx,sinx),
b
=(
2
2
)
,若
a
b
=
8
5
,且
π
4
<x<
π
2

(1)求cos(x-
π
4
)
tan(x-
π
4
)
的值;
(2)求
sin2x(1+tanx)
1-tanx
的值.
分析:(1)先根据向量的数量积以及
a
b
=
8
5
得到sin(x+
π
4
)=
4
5
⇒cos(
π
4
-x)=
4
5
进而求出cos(x-
π
4
)
,再利用同角三角函数的基本关系式即可求出tan(x-
π
4
)
的值;
(2)先利用诱导公式以及两角和的正切公式对所求进行整理,再把第一问的结论代入即可求出答案.
解答:解:因为:
a
b
=
2
cosx+
2
sinx=2sin(x+
π
4

∴2sin(x+
π
4
)=
8
5
⇒sin(x+
π
4
)=
4
5
⇒cos(
π
4
-x)=
4
5

(1)∴cos(x-
π
4
)=
4
5

π
4
<x<
π
2
⇒0<x-
π
4
π
4
⇒sin(x-
π
4
)=
1-cos 2(x-
π
4
)
=
3
5

∴tan(x-
π
4
)=
sin(x-
π
4
)
cos(x-
π
4
)
=
3
5
4
5
=
3
4

(2)∵
sin2x(1+tanx)
1-tanx

=sin2x•
1+tanx
1-tanx

=cos(
π
2
-2x)•tan(x+
π
4

=cos(2x-
π
2
)•cot(
π
4
-x)
=-cos2(x-
π
4
)•
1
tan(x-
π
4
)

=-[2cos2(x-
π
4
)-1]×
1
3
4

=-[2×(
4
5
)
2
-1]×
4
3

=-
28
75
点评:本题主要考查向量和三角的综合问题.解决问题的关键在于对公式的熟练掌握以及灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网