题目内容
已知函数f(x)=ex-ax(e为自然对数的底数).
(Ⅰ)当a=2时,求曲线f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)已知函数f(x)在x=0处取得极小值,不等式f(x)<mx的解集为P,若M={x|
≤x≤2},且M∩P≠∅,求实数m的取值范围.
(Ⅰ)当a=2时,求曲线f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)已知函数f(x)在x=0处取得极小值,不等式f(x)<mx的解集为P,若M={x|
1 | 2 |
分析:(Ⅰ)a=2时,f(x)=ex-2x,f(0)=1,f′(x)=ex-2,得f′(0)=-1,由此能求出曲线y=f(x)在(0,f(0))处的切线方程.
(Ⅱ)由函数f(x)=ex-ax得到f′(x)=ex-a,由此根据a的取值范围进行分类讨论,能求出函数f(x)的单调区间.
(Ⅲ)由题意知,f′(0)=0,再由M∩P≠∅,得到不等式f(x)<mx在[
, 2]上有解,分离参数,求得函数最值,即可得到实数m的取值范围.
(Ⅱ)由函数f(x)=ex-ax得到f′(x)=ex-a,由此根据a的取值范围进行分类讨论,能求出函数f(x)的单调区间.
(Ⅲ)由题意知,f′(0)=0,再由M∩P≠∅,得到不等式f(x)<mx在[
1 |
2 |
解答:解:(Ⅰ)当a=2时,f(x)=ex-2x,f(0)=1,f′(x)=ex-2,得f′(0)=-1,
所以曲线f(x)在点(0,f(0))处的切线方程为y=-x+1.
(Ⅱ)f′(x)=ex-a.
当a≤0时,f′(x)>0恒成立,此时f(x)的单调递增区间为(-∞,+∞),无单调递减区间;
当a>0时,x∈(-∞,lna)时,f′(x)<0,x∈(lna,+∞)时,f′(x)>0,
此时f(x)的单调递增区间为(lna,+∞),单调递减区间为(-∞,lna).
(Ⅲ)由函数f(x)在x=0处取得极小值,则f′(0)=0得a=1,经检验此时f(x)在x=0处取得极小值.
因为M∩P≠∅,
所以f(x)<mx在[
, 2]上有解,即?x∈[
, 2]使f(x)<mx成立,
即?x∈[
, 2]使m>
成立,
所以m>(
)min.
令g(x)=
-1,g′(x)=
,
所以g(x)在[
, 1]上单调递减,在[1,2]上单调递增,
则g(x)min=g(1)=e-1,
所以m∈(e-1,+∞).
所以曲线f(x)在点(0,f(0))处的切线方程为y=-x+1.
(Ⅱ)f′(x)=ex-a.
当a≤0时,f′(x)>0恒成立,此时f(x)的单调递增区间为(-∞,+∞),无单调递减区间;
当a>0时,x∈(-∞,lna)时,f′(x)<0,x∈(lna,+∞)时,f′(x)>0,
此时f(x)的单调递增区间为(lna,+∞),单调递减区间为(-∞,lna).
(Ⅲ)由函数f(x)在x=0处取得极小值,则f′(0)=0得a=1,经检验此时f(x)在x=0处取得极小值.
因为M∩P≠∅,
所以f(x)<mx在[
1 |
2 |
1 |
2 |
即?x∈[
1 |
2 |
ex-x |
x |
所以m>(
ex-x |
x |
令g(x)=
ex |
x |
(x-1)ex |
x2 |
所以g(x)在[
1 |
2 |
则g(x)min=g(1)=e-1,
所以m∈(e-1,+∞).
点评:本题考查函数的切线方程的求法,考查函数的单调性的求法.解题时要认真审题,仔细解答,注意等价转化思想和分类讨论思想的合理运用.
练习册系列答案
相关题目