题目内容
【题目】下列函数中,满足“对任意的,当时,总有”的是( )
A. B. C. D.
【答案】C
【解析】
根据题目所给条件,说明函数f(x)在(﹣∞,0)上应为减函数,其中选项A是二次函数,C是反比例函数,D是指数函数,图象情况易于判断,B是对数型的,从定义域上就可以排除.
函数满足“对任意的x1,x2∈(﹣∞,0),当x1<x2时,总有f(x1)>f(x2)”,说明函数在(﹣∞,1)上为减函数.
f(x)=(x+1)2是二次函数,其图象是开口向上的抛物线,对称轴方程为x=﹣1,所以函数在(﹣∞,﹣1)单调递减,在(﹣1,+∞)单调递增,不满足题意.
函数f(x)=ln(x﹣1)的定义域为(1,+∞),所以函数在(﹣∞,0)无意义.
对于函数f(x)=,设x1<x2<0,则f(x1)﹣f(x2)=,因为x1,x2∈(﹣∞,0),且x1<x20,x2﹣x1>0,则,所以f(x1)>f(x2),故函数f(x)=在(﹣∞,0)上为减函数.函数f(x)=ex在(﹣∞,+∞)上为增函数.
故选:C.
练习册系列答案
相关题目