题目内容
(08年长郡中学二模文)若关于的不等式≥在上恒成立,则的最大值为( )
(A) (B) (C) (D)
答案:B
(08年长郡中学二模理) (12分) 某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是. 假设两人参加测试是否通过相互之间没有影响.
(I)求甲工人连续3个月参加技能测试至少1次未通过的概率;
(II)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率;
(III)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.
(08年长郡中学二模理)(13分)如图,公园有一块边长为2a的等边三角形的边角地,今要修成草地,并使DE把草坪分成面积相等的两部分,如果。
(1)将用x表示y的函数关系;并指出函数的定义域;
(2)如果DE是灌溉水管,为节约成本,希望它最短,问DE的位置应如何确定?如果DE是观光路线,则希望它最长,问DE的位置应如何确定?说明理由
(08年长郡中学二模理)(13分)已知函数,其中。设两曲线有公共点,且在公共点处的切线相同。
(1)若,求的值;
(2)用表示,并求的最大值。
(08年长郡中学二模文)(13分)已知数列,是其前项的和,且(≥2),
(1)求数列的通项公式;
(2)设,,是否存在最小的正整数,使得对于任意的正整数n,有恒成立?若存在,求出的值;若不存在,说明理由。
(08年长郡中学二模文)(13分)设F是抛物线的焦点,过点M(-1,0)且以为方向向量的直线顺次交抛物线于A,B两点。
(1)当时,若与的夹角为,求抛物线的方程;
(2)若点A,B满足,证明为定值,并求此时△AFB的面积。