题目内容
【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)
A.1624B.1024C.1198D.1560
【答案】B
【解析】
根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.
依题意
:1,4,8,14,23,36,54,……
两两作差得
:3,4,6,9,13,18,……
两两作差得
:1,2,3,4,5,……
设该数列为,令,设的前项和为,又令,设的前项和为.
易,,进而得,所以,则,所以,所以.
故选:B
练习册系列答案
相关题目