ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã$\overrightarrow{a}$=£¨-2sinx£¬$\sqrt{3}$£¨cosx+sinx£©£©£¬$\overrightarrow{b}$=£¨cosx£¬cosx-sinx£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¨x¡ÊR£©£®£¨¢ñ£©Çóf£¨x£©ÔÚx¡Ê[-$\frac{¦Ð}{2}$£¬0]ʱµÄÖµÓò£»
£¨¢ò£©ÒÑÖªÊýÁÐan=n2f£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©£¨n¡ÊN+£©£¬Çó{an}µÄÇ°2nÏîºÍS2n£®
·ÖÎö £¨¢ñ£©ÀûÓÃƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦ÓÿÉÇó½âÎöʽf£¨x£©=2sin£¨2x+$\frac{2¦Ð}{3}$£©£¬ÓÉx¡Ê[-$\frac{¦Ð}{2}$£¬0]£¬¿ÉÇó2x+$\frac{2¦Ð}{3}$µÄ·¶Î§£¬ÀûÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʼ´¿ÉÇóÖµÓò£®
£¨¢ò£©ÀûÓ㨢ñ£©¿ÉµÃan=2n2sin£¨n$¦Ð-\frac{¦Ð}{4}$£©£¬¿ÉÇóµÃS2n=$\sqrt{2}$[12-22+32-42+¡+£¨2n-1£©2-£¨2n£©2]£¬ÀûÓã¨2n-1£©2-£¨2n£©2=-4n+1£¬ÓɵȲîÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ½â£®
½â´ð ½â£º£¨¢ñ£©f£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=-sin2x+$\sqrt{3}$cos2x=2sin£¨2x+$\frac{2¦Ð}{3}$£©£¬
µ±x¡Ê[-$\frac{¦Ð}{2}$£¬0]ʱ£¬2x+$\frac{2¦Ð}{3}$¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£¬
¿ÉµÃ£º2sin£¨2x+$\frac{2¦Ð}{3}$£©¡Ê[-$\sqrt{3}$£¬2]¡4·Ö
£¨¢ò£©¡ßan=n2f£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©=2n2sin[2£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©+$\frac{2¦Ð}{3}$]=2n2sin£¨n$¦Ð-\frac{¦Ð}{4}$£©£¬
¡àS2n=$\sqrt{2}$[12-22+32-42+¡+£¨2n-1£©2-£¨2n£©2]£¬
Ó֡ߣ¨2n-1£©2-£¨2n£©2=-4n+1£¬
¡à½âµÃ£ºS2n=$\sqrt{2}$¡Á$\frac{£¨-3-4n+1£©n}{2}$=$\sqrt{2}$£¨-2n2-n£©¡10·Ö
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óã¬ÊýÁеÄÇóºÍ£¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®
A£® | $\frac{5}{6}$ | B£® | 6 | C£® | $\frac{1}{6}$ | D£® | 5 |
A£® | £¨-$\frac{3}{5}$£¬$\frac{1}{5}$£© | B£® | £¨-$\frac{2}{5}$£¬$\frac{1}{5}$£© | C£® | £¨-$\frac{3}{5}$£¬-$\frac{2}{5}$£© | D£® | £¨-$\frac{1}{5}$£¬$\frac{1}{5}$£© |
A£® | $\left\{\begin{array}{l}{0¡Üy¡Ü1}\\{2x-y+2¡Ü0}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{y¡Ü1}\\{2x-y+2¡Ü0}\end{array}\right.$ | ||
C£® | $\left\{\begin{array}{l}{0¡Üy¡Ü1}\\{2x-y+2¡Ý0}\\{x¡Ü0}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{y¡Ü1}\\{x¡Ü0}\\{2x-y+2¡Ü0}\end{array}\right.$ |
A£® | $\frac{1}{{2}^{5}}$ | B£® | $\frac{1}{{2}^{4}}$ | C£® | $\frac{1}{2}$ | D£® | 2 |