ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã$\overrightarrow{a}$=£¨-2sinx£¬$\sqrt{3}$£¨cosx+sinx£©£©£¬$\overrightarrow{b}$=£¨cosx£¬cosx-sinx£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¨x¡ÊR£©£®
£¨¢ñ£©Çóf£¨x£©ÔÚx¡Ê[-$\frac{¦Ð}{2}$£¬0]ʱµÄÖµÓò£»
£¨¢ò£©ÒÑÖªÊýÁÐan=n2f£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©£¨n¡ÊN+£©£¬Çó{an}µÄÇ°2nÏîºÍS2n£®

·ÖÎö £¨¢ñ£©ÀûÓÃƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦ÓÿÉÇó½âÎöʽf£¨x£©=2sin£¨2x+$\frac{2¦Ð}{3}$£©£¬ÓÉx¡Ê[-$\frac{¦Ð}{2}$£¬0]£¬¿ÉÇó2x+$\frac{2¦Ð}{3}$µÄ·¶Î§£¬ÀûÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʼ´¿ÉÇóÖµÓò£®
£¨¢ò£©ÀûÓ㨢ñ£©¿ÉµÃan=2n2sin£¨n$¦Ð-\frac{¦Ð}{4}$£©£¬¿ÉÇóµÃS2n=$\sqrt{2}$[12-22+32-42+¡­+£¨2n-1£©2-£¨2n£©2]£¬ÀûÓã¨2n-1£©2-£¨2n£©2=-4n+1£¬ÓɵȲîÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨¢ñ£©f£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=-sin2x+$\sqrt{3}$cos2x=2sin£¨2x+$\frac{2¦Ð}{3}$£©£¬
µ±x¡Ê[-$\frac{¦Ð}{2}$£¬0]ʱ£¬2x+$\frac{2¦Ð}{3}$¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£¬
¿ÉµÃ£º2sin£¨2x+$\frac{2¦Ð}{3}$£©¡Ê[-$\sqrt{3}$£¬2]¡­4·Ö
£¨¢ò£©¡ßan=n2f£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©=2n2sin[2£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©+$\frac{2¦Ð}{3}$]=2n2sin£¨n$¦Ð-\frac{¦Ð}{4}$£©£¬
¡àS2n=$\sqrt{2}$[12-22+32-42+¡­+£¨2n-1£©2-£¨2n£©2]£¬
Ó֡ߣ¨2n-1£©2-£¨2n£©2=-4n+1£¬
¡à½âµÃ£ºS2n=$\sqrt{2}$¡Á$\frac{£¨-3-4n+1£©n}{2}$=$\sqrt{2}$£¨-2n2-n£©¡­10·Ö

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óã¬ÊýÁеÄÇóºÍ£¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø