题目内容
【题目】已知F1、F2分别为双曲线 (a>0,b>0)的左、右焦点,若双曲线左支上存在一点P使得 =8a,则双曲线的离心率的取值范围是 .
【答案】(1,3]
【解析】解:∵P为双曲线左支上一点, ∴|PF1|﹣|PF2|=﹣2a,
∴|PF2|=|PF1|+2a,①
又 =8a,②
∴由①②可得,|PF1|=2a,|PF2|=4a.
∴|PF1|+|PF2|≥|F1F2|,即2a+4a≥2c,
∴ ≤3,③
又|PF1|+|F1F2|>|PF2|,
∴2a+2c>4a,
∴ >1.④
由③④可得1< ≤3.
故答案为:(1,3].
依题意,双曲线左支上存在一点P使得 =8a,|PF1|﹣|PF2|=﹣2a,可求得,|PF1|=2a,|PF2|=4a,再利用|PF1|、|F1F2|、|PF2|之间的关系即可求得双曲线的离心率的取值范围.
练习册系列答案
相关题目
【题目】某市政府为了实施政府绩效管理、创新政府公共服务模式、提高公共服务效率.实施了“政府承诺,等你打分”民意调查活动,通过问卷调查了学生、在职人员、退休人员共250人,统计结果表不幸被污损,如表:
学生 | 在职人员 | 退休人员 | |
满意 | 78 | ||
不满意 | 5 | 12 |
若在所调查人员中随机抽取1人,恰好抽到学生的概率为0.32.
(1)求满意学生的人数;
(2)现用分层抽样的方法在所调查的人员中抽取25人,则在职人员应抽取多少人?
(3)若满意的在职人员为77,则从问卷调查中填写不满意的“学生和在职人员”中选出2人进行访谈,求这2人中包含了两类人员的概率.