ÌâÄ¿ÄÚÈÝ
ÔÚÊýÁÐ{an}ºÍ{bn}ÖУ¬an=an£¬bn=£¨a+1£©n+b£¬n=1£¬2£¬3£¬¡£¬ÆäÖÐa¡Ý2ÇÒa¡ÊN*£¬b¡ÊR£®£¨¢ñ£©Èôa1=b1£¬a2£¼b2£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍ£»
£¨¢ò£©Ö¤Ã÷£ºµ±Ê±£¬ÊýÁÐ{bn}ÖеÄÈÎÒâÈýÏ²»Äܹ¹³ÉµÈ±ÈÊýÁУ»
£¨¢ó£©ÉèA={a1£¬a2£¬a3£¬¡}£¬B={b1£¬b2£¬b3£¬¡}£¬ÊÔÎÊÔÚÇø¼ä[1£¬a]ÉÏÊÇ·ñ´æÔÚʵÊýbʹµÃC=A¡ÉB¡Ù∅£®Èô´æÔÚ£¬Çó³öbµÄÒ»ÇпÉÄܵÄÈ¡Öµ¼°ÏàÓ¦µÄ¼¯ºÏC£»Èô²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨I£©ÓÉa1=b1£¬a2£¼b2£¬½áºÏÒÑÖª¿É½¨Á¢a£¬bµÄ·½³Ì£¬´Ó¶ø¿ÉÇóa£¬b£¬½øÒ»²½Çó³öÊýÁÐbnµÄͨÏî¼°Ç°nÏîºÍ
£¨II£©½áºÏ£¨I£©Öª£¬¼ÙÉèamanat£¨m£®n£®t¡ÊN+£©³ÉµÈ±ÈÊýÁУ¬ÇÒm¡Ùn¡Ùt£¬ÓɼÙÉèÍƵ¼¿ÉµÃ£¬½áºÏm¡Ùt¡Ùn¡ÊN+µÄÌõ¼þ¿É֪ì¶Ü£®
£¨III£©Éè´æÔÚʵÊýb¡Ê[1£¬a]£¬Ê¹C=A¡ÉB¡Ù∅£¬Èôm¡ÊC£¬Ôòm¡ÊA£¬ÇÒm¡ÊB£¬
ÓÉm¡ÊA¿ÉÉèm=at£¬ÓÉm¡ÊB¿ÉÉèmo=£¨a+1£©s+b£¬ÕûÀí¿ÉµÃ·ÖtΪÆæżÇé¿ö·Ö±ð½øÐÐÌÖÂÛ£¬ÈôÍƳöì¶Ü£¬Ôò˵Ã÷²»´æÔÚ£¬·ñÔò´æÔÚ·ûºÏÌõ¼þµÄʵÊýb
½â´ð£º½â£º£¨¢ñ£©ÒòΪa1=b1£¬ËùÒÔa=a+1+b£¬b=-1£¬£¨1·Ö£©
ÓÉa2£¼b2£¬µÃa2-2a-1£¼0£¬
ËùÒÔ£¬£¨3·Ö£©
ÒòΪa¡Ý2ÇÒa¡ÊN*£¬ËùÒÔa=2£¬£¨4·Ö£©
ËùÒÔbn=3n-1£¬{bn}ÊǵȲîÊýÁУ¬
ËùÒÔÊýÁÐ{bn}µÄÇ°nÏîºÍ£®£¨5·Ö£©
£¨¢ò£©ÓÉÒÑÖª£¬¼ÙÉ裬£¬³ÉµÈ±ÈÊýÁУ¬ÆäÖÐm£¬n£¬t¡ÊN*£¬Çұ˴˲»µÈ£¬
Ôò£¬£¨6·Ö£©
ËùÒÔ£¬
ËùÒÔ£¬
Èôm+t-2n=0£¬Ôò3n2-3mt=0£¬¿ÉµÃm=t£¬Óëm¡Ùtì¶Ü£»£¨7·Ö£©
Èôm+t-2n¡Ù0£¬Ôòm+t-2nΪ·ÇÁãÕûÊý£¬ÎªÎÞÀíÊý£¬
ËùÒÔ3n2-3mtΪÎÞÀíÊý£¬Óë3n2-3mtÊÇÕûÊýì¶Ü£®£¨9·Ö£©
ËùÒÔÊýÁÐ{bn}ÖеÄÈÎÒâÈýÏ²»Äܹ¹³ÉµÈ±ÈÊýÁУ®
£¨¢ó£©Éè´æÔÚʵÊýb¡Ê[1£¬a]£¬Ê¹C=A¡ÉB¡Ù∅£¬
Éèm¡ÊC£¬Ôòm¡ÊA£¬ÇÒm¡ÊB£¬
Éèm=at£¨t¡ÊN*£©£¬m=£¨a+1£©s+b£¨s¡ÊN*£©£¬
Ôòat=£¨a+1£©s+b£¬ËùÒÔ£¬
ÒòΪa£¬t£¬s¡ÊN*£¬ÇÒa¡Ý2£¬ËùÒÔat-bÄܱ»a+1Õû³ý£®£¨10·Ö£©
£¨1£©µ±t=1ʱ£¬ÒòΪb¡Ê[1£¬a]£¬a-b¡Ê[0£¬a-1]£¬
ËùÒÔ£»£¨11·Ö£©
£¨2£©µ±t=2n£¨n¡ÊN*£©Ê±£¬a2n-b=[£¨a+1£©-1]2n-b=£¨a+1£©2n+-C2n1£¨a+1£©+1-b£¬
ÓÉÓÚb¡Ê[1£¬a]£¬ËùÒÔb-1¡Ê[0£¬a-1]£¬0¡Üb-1£¼a+1£¬
ËùÒÔ£¬µ±ÇÒ½öµ±b=1ʱ£¬at-bÄܱ»a+1Õû³ý£®£¨12·Ö£©
£¨3£©µ±t=2n+1£¨n¡ÊN*£©Ê±£¬a2n+1-b=[£¨a+1£©-1]2n+1-b=£¨a+1£©2n+1++C2n+11£¨a+1£©-1-b£¬
ÓÉÓÚb¡Ê[1£¬a]£¬ËùÒÔb+1¡Ê[2£¬a+1]£¬
ËùÒÔ£¬µ±ÇÒ½öµ±b+1=a+1£¬¼´b=aʱ£¬at-bÄܱ»a+1Õû³ý£®£¨13·Ö£©
×ÛÉÏ£¬ÔÚÇø¼ä[1£¬a]ÉÏ´æÔÚʵÊýb£¬Ê¹C=A¡ÉB¡Ù∅³ÉÁ¢£¬ÇÒµ±b=1ʱ£¬C={y|y=a2n£¬n¡ÊN*}£»µ±b=aʱ£¬C={y|y=a2n+1£¬n¡ÊN}£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÊýÁеÄÇóºÍ¡¢µÈ±ÈÊýÁеĶ¨Òå¡¢ÊýÁÐÓ뼯ºÏ×ۺϣ¬¿¼²éÁË¿¼ÉúµÄÂß¼ÍÆÀíÄÜÁ¦Óë·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
£¨II£©½áºÏ£¨I£©Öª£¬¼ÙÉèamanat£¨m£®n£®t¡ÊN+£©³ÉµÈ±ÈÊýÁУ¬ÇÒm¡Ùn¡Ùt£¬ÓɼÙÉèÍƵ¼¿ÉµÃ£¬½áºÏm¡Ùt¡Ùn¡ÊN+µÄÌõ¼þ¿É֪ì¶Ü£®
£¨III£©Éè´æÔÚʵÊýb¡Ê[1£¬a]£¬Ê¹C=A¡ÉB¡Ù∅£¬Èôm¡ÊC£¬Ôòm¡ÊA£¬ÇÒm¡ÊB£¬
ÓÉm¡ÊA¿ÉÉèm=at£¬ÓÉm¡ÊB¿ÉÉèmo=£¨a+1£©s+b£¬ÕûÀí¿ÉµÃ·ÖtΪÆæżÇé¿ö·Ö±ð½øÐÐÌÖÂÛ£¬ÈôÍƳöì¶Ü£¬Ôò˵Ã÷²»´æÔÚ£¬·ñÔò´æÔÚ·ûºÏÌõ¼þµÄʵÊýb
½â´ð£º½â£º£¨¢ñ£©ÒòΪa1=b1£¬ËùÒÔa=a+1+b£¬b=-1£¬£¨1·Ö£©
ÓÉa2£¼b2£¬µÃa2-2a-1£¼0£¬
ËùÒÔ£¬£¨3·Ö£©
ÒòΪa¡Ý2ÇÒa¡ÊN*£¬ËùÒÔa=2£¬£¨4·Ö£©
ËùÒÔbn=3n-1£¬{bn}ÊǵȲîÊýÁУ¬
ËùÒÔÊýÁÐ{bn}µÄÇ°nÏîºÍ£®£¨5·Ö£©
£¨¢ò£©ÓÉÒÑÖª£¬¼ÙÉ裬£¬³ÉµÈ±ÈÊýÁУ¬ÆäÖÐm£¬n£¬t¡ÊN*£¬Çұ˴˲»µÈ£¬
Ôò£¬£¨6·Ö£©
ËùÒÔ£¬
ËùÒÔ£¬
Èôm+t-2n=0£¬Ôò3n2-3mt=0£¬¿ÉµÃm=t£¬Óëm¡Ùtì¶Ü£»£¨7·Ö£©
Èôm+t-2n¡Ù0£¬Ôòm+t-2nΪ·ÇÁãÕûÊý£¬ÎªÎÞÀíÊý£¬
ËùÒÔ3n2-3mtΪÎÞÀíÊý£¬Óë3n2-3mtÊÇÕûÊýì¶Ü£®£¨9·Ö£©
ËùÒÔÊýÁÐ{bn}ÖеÄÈÎÒâÈýÏ²»Äܹ¹³ÉµÈ±ÈÊýÁУ®
£¨¢ó£©Éè´æÔÚʵÊýb¡Ê[1£¬a]£¬Ê¹C=A¡ÉB¡Ù∅£¬
Éèm¡ÊC£¬Ôòm¡ÊA£¬ÇÒm¡ÊB£¬
Éèm=at£¨t¡ÊN*£©£¬m=£¨a+1£©s+b£¨s¡ÊN*£©£¬
Ôòat=£¨a+1£©s+b£¬ËùÒÔ£¬
ÒòΪa£¬t£¬s¡ÊN*£¬ÇÒa¡Ý2£¬ËùÒÔat-bÄܱ»a+1Õû³ý£®£¨10·Ö£©
£¨1£©µ±t=1ʱ£¬ÒòΪb¡Ê[1£¬a]£¬a-b¡Ê[0£¬a-1]£¬
ËùÒÔ£»£¨11·Ö£©
£¨2£©µ±t=2n£¨n¡ÊN*£©Ê±£¬a2n-b=[£¨a+1£©-1]2n-b=£¨a+1£©2n+-C2n1£¨a+1£©+1-b£¬
ÓÉÓÚb¡Ê[1£¬a]£¬ËùÒÔb-1¡Ê[0£¬a-1]£¬0¡Üb-1£¼a+1£¬
ËùÒÔ£¬µ±ÇÒ½öµ±b=1ʱ£¬at-bÄܱ»a+1Õû³ý£®£¨12·Ö£©
£¨3£©µ±t=2n+1£¨n¡ÊN*£©Ê±£¬a2n+1-b=[£¨a+1£©-1]2n+1-b=£¨a+1£©2n+1++C2n+11£¨a+1£©-1-b£¬
ÓÉÓÚb¡Ê[1£¬a]£¬ËùÒÔb+1¡Ê[2£¬a+1]£¬
ËùÒÔ£¬µ±ÇÒ½öµ±b+1=a+1£¬¼´b=aʱ£¬at-bÄܱ»a+1Õû³ý£®£¨13·Ö£©
×ÛÉÏ£¬ÔÚÇø¼ä[1£¬a]ÉÏ´æÔÚʵÊýb£¬Ê¹C=A¡ÉB¡Ù∅³ÉÁ¢£¬ÇÒµ±b=1ʱ£¬C={y|y=a2n£¬n¡ÊN*}£»µ±b=aʱ£¬C={y|y=a2n+1£¬n¡ÊN}£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÊýÁеÄÇóºÍ¡¢µÈ±ÈÊýÁеĶ¨Òå¡¢ÊýÁÐÓ뼯ºÏ×ۺϣ¬¿¼²éÁË¿¼ÉúµÄÂß¼ÍÆÀíÄÜÁ¦Óë·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿