题目内容

(2010•桂林二模)(注意:在试题卷上作答无效)
桂林某学校从参加高三年级第二次模拟考试的学生中随机抽出100名学生,将其数学成绩(均为整数)分成五段[50,70),[70,90),[90,110),[110,130),[130,150]后得到如右部分频率分布直方图,分析图形的信息,回答下列问题:
(Ⅰ)求分数在[90,110)内的频率和学生数,并补全这个频率分布直方图;
(Ⅱ)现从分数段[90,150]的学生中随机抽取2人给予助学金奖励,抽到的学生成绩在[90,110)内每人奖励100元,在[100,130)内每人奖励200元,在[130,150)内每人奖励300元,用ξ表示抽取结束后总的奖励金额,求ξ的分布列和数学期望.
分析:(I)根据所求的频率的和为1可求出分数在[90,110)内的频率,该频率乘以样本容量,可求频数,即为分数在[90,110)内的学生数,然后计算出在[90,110)的高,补全图形即可;
(II)先分别求出成绩在[90,110)、[110,130)、[130,150)内的人数,ξ的可能取值为200,300,400,500,600,然后根据古典概型的概率公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.
解答:解:(I)设分数在[90,110)内的频率为x,根据频率分布直方图有
∵1-(0.005+0.01+0.02+0.005)×20=0.2
∴x=0.2,100×0.2=20人,
0.2
20
=0.01

∴分数在[90,110)内的频率为0.2,学生数为20人
所以频率分布直方图如右图所示.
(II)由图知成绩在[90,110)内有100×0.01×20=20人,在[110,130)内有100×0.02×20=40人,
在[130,150)内有100×0.005×20=10人,共有70人
ξ的可能取值为200,300,400,500,600
则P(ξ=200)=
C
2
20
C
2
70
=
38
483
,P(ξ=300)=
C
1
20
C
1
40
C
2
70
=
160
483

P(ξ=400)=
C
1
20
C
1
10
+
C
2
40
C
2
70
=
196
483

P(ξ=500)=
C
1
10
C
1
40
C
2
70
=
80
483

P(ξ=600)=
C
2
10
C
2
70
=
9
483

∴ξ的分布列为
 ξ  200 300  400  500    600
 P  
38
483
 
160
483
 
196
483
 
80
483
 
9
483
∴Eξ=200×
38
483
+300×
160
483
+400×
196
483
+500×
80
483
+600×
9
483
=360
答:所求的数学期望为360元.
点评:本题主要考查了频率分布直方图,以及离散型随机变量的分布列和数学期望,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网