题目内容

如图,E、F分别为正方形的面ADD1A1与面BCC1B1的中心,则四边形BFD1E在正方体的面上的正投影影可能是(要求:把可能的图的序号都填上)
 

考点:平行投影及平行投影作图法
专题:计算题,空间位置关系与距离
分析:按照三视图的作法:上下、左右、前后三个方向的射影,四边形的四个顶点在三个投影面上的射影,再将其连接即可得到三个视图的形状,按此规则对题设中所给的四图形进行判断即可.
解答:解:因为正方体是对称的几何体,
所以四边形BFD1E在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,
也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.
四边形BFD1E在面ABCD和面ABB1A1上的射影相同,如图②所示;
四边形BFD1E在该正方体对角面的ABC1D1内,它在面ADD1A1上的射影显然是一条线段,如图③所示.
故②③正确
故答案为:②③.
点评:本题考查简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图是高考的新增考点,不时出现在高考试题中,应予以重视.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网