题目内容
【题目】已知,. 对于函数、,若存在常数,,使得,不等式都成立,则称直线是函数与的分界线.
(1)讨论函数的单调性;
(2)当时,试探究函数与是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.
【答案】(1)见解析(2)时,与存在“分界线”,理由见解析
【解析】
(1)求导后分,与三种情况讨论即可.
(2)由题意,代入时,有,再根据二次函数的恒成立问题求得,再证明即可.
(1)由得,
若时,有,则在上单调递增;
若时,由解得,
若时,对于,有;,有,
则在上单调递减,在上单调递增;
若时,对于,有;,有,
则在上单调递增,在上单调递减.
(2)当时,,,
若对都成立,
即对都成立.
则时,有;且,对都成立,
即,对都成立.
所以 ,.
此时,令,
则,
令,在上恒成立,
又在上,
∴在单增且,
从而有时,;时,,即在
所以在上递减,在上递增.
因此,即.
故时,与存在“分界线”.
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
中国新能源汽车产销情况一览表 | ||||
新能源汽车生产情况 | 新能源汽车销售情况 | |||
产品(万辆) | 比上年同期 | 销量(万辆) | 比上年同期 | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
根据上述图表信息,下列结论错误的是( )
A.2017年3月份我国新能源汽车的产量不超过万辆
B.2017年我国新能源汽车总销量超过万辆
C.2018年8月份我国新能源汽车的销量高于产量
D.2019年1月份我国插电式混合动力汽车的销量低于万辆
【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):
满意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | |
10分(满意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不满意) | 1 | 0 | 6 | 3 | 4 | 4 |
(span>1)在样本中任取个,求这个出行人恰好不是青年人的概率;
(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;
(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.