题目内容

【题目】已知非空集合A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},
(1)当a=10时,求A∩B,A∪B;
(2)求能使AB成立的a的取值范围.

【答案】
(1)解:当a=10时,A={21≤x≤25},B={x|3≤x≤22},

∴A∩B={x|21≤x≤22},

A∪B={x|3≤x≤25}.


(2)解:∵A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},且AB,

解得6≤a≤9.

∴a的取值范围是[6,9]


【解析】(1)当a=10时,A={21≤x≤25},B={x|3≤x≤22},由此能求出A∩B和A∪B.(2)由A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},且AB,知 ,由此能求出a的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网