题目内容
已知等比数列{an}的首项、公比、前三项的平均值都等于常数a.
(I)求数列{an}的通项公式;
(II)设a≠1,n≥2,记bn=
,Tn=b2+b3+…+bn.
(i)证明:bn=-
[
-
];
(ii)若Tn>
,求n的所有可能取值.
(I)求数列{an}的通项公式;
(II)设a≠1,n≥2,记bn=
an |
a2n+an-2 |
(i)证明:bn=-
1 |
3 |
1 |
(-2)n-1-1 |
1 |
(-2)n-1 |
(ii)若Tn>
7 |
60 |
分析:(I)由等比数列{an}的首项、公比、前三项的平均值都等于常数a,知a+a2+a3=3a,a≠0,由此能求出a.
(II)(i)an=(-2)n,bn=
=
,由-
[
-
]=
.能够证明bn=-
[
-
].
(ii)由(i)知:Tn=-
(
-
)>
,即
>
,由此能求出n的所有可能取值.
(II)(i)an=(-2)n,bn=
an |
a2n+an-2 |
(-2)n |
(-2)2n+(-2)n-2 |
1 |
3 |
1 |
(-2)n-1-1 |
1 |
(-2)n-1 |
(-2)n |
(-2)2n+(-2)n-2 |
1 |
3 |
1 |
(-2)n-1-1 |
1 |
(-2)n-1 |
(ii)由(i)知:Tn=-
1 |
3 |
1 |
-3 |
1 |
(-2)n-1 |
1 |
60 |
1 |
(-2)n-1 |
1 |
60 |
解答:解:(I)∵等比数列{an}的首项、公比、前三项的平均值都等于常数a,
∴a+a2+a3=3a,a≠0,
∴a2+a-2=0,解得a=1,或a=-2,
故an=1,或an=(-2)n.
(II)(i)an=(-2)n,bn=
=
,
∵-
[
-
]
=-
•
=-
•
=-
•
=
=
.
∴bn=-
[
-
].
(ii)由(i)知:
Tn=-
(
-
)>
,
即
>
,
若n为奇数,则
<0,舍去
若n为偶数,则
>
,
即2n-1<60,2n<61<64=26,得n<6,
故n=2或n=4.
∴a+a2+a3=3a,a≠0,
∴a2+a-2=0,解得a=1,或a=-2,
故an=1,或an=(-2)n.
(II)(i)an=(-2)n,bn=
an |
a2n+an-2 |
(-2)n |
(-2)2n+(-2)n-2 |
∵-
1 |
3 |
1 |
(-2)n-1-1 |
1 |
(-2)n-1 |
=-
1 |
3 |
[(-2)n-1]-[(-2)n-1-1] |
[(-2)n-1-1][(-2)n-1] |
=-
1 |
3 |
(-2)n-(-2)n-1 |
(-2)2n-1-(-2)n-(-2)n-1+1 |
=-
1 |
3 |
-3(-2)n-1 |
(-2)2n-1+(-2)n-1+1 |
=
(-2)n-1•(-2) |
[(-2)2n-1+(-2)n-1+1]•(-2) |
=
(-2)n |
(-2)2n+(-2)n-2 |
∴bn=-
1 |
3 |
1 |
(-2)n-1-1 |
1 |
(-2)n-1 |
(ii)由(i)知:
Tn=-
1 |
3 |
1 |
-3 |
1 |
(-2)n-1 |
1 |
60 |
即
1 |
(-2)n-1 |
1 |
60 |
若n为奇数,则
1 |
(-2)n-1 |
若n为偶数,则
1 |
2n-1 |
1 |
60 |
即2n-1<60,2n<61<64=26,得n<6,
故n=2或n=4.
点评:本题考查数列的综合应用,综合性强,难度大,具有一定的探索性.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目