题目内容

如图所示,平面四边形PABC中,∠PAB为直角,△ABC为等边三角形,现把△PAB沿着AB折起,使得△APB与△ABC垂直,且点M为AB的中点.
(1)求证:平面PAB⊥平面PCM
(2)若2PA=AB,求直线BC与平面PMC所成角的余弦值.
分析:(1)由面APB⊥面ABC,PA⊥AB,得到线PA⊥面ABC,从而得到PA⊥CM,根据M为等边三角形ABC的中点,得到CM⊥AB,从而证出线面垂直,进一步得到面面垂直;
(2)求直线BC与平面PMC所成角的余弦值,首先利用等积法求出B到面PMC的距离,该距离与BC长度的比值为直线BC与平面PMC所成角的正弦值,利用同角三角函数的基本关系式求出余弦值.
解答:(1)证明:∵△APB⊥△ABC且交线为AB
又∵∠PAB为直角,所以AP⊥平面ABC,
故AP⊥CM,
又∵△ABC为等边三角形,点M为AB的中点,
所以CM⊥AB,又∵PA∩AB=A
所以CM⊥平面PAB,又CM?△ABC
所以平面PAB⊥平面PCM;
(2)解:假设PA=a,则AB=2a,再设B到平面PMC的距离为hB
则VP-MBC=VB-PMC=
1
3
PA•SMBC=
1
3
hBSPMC

在直角三角形PAM中,由PA=AM=a,得PM=
2
a

在等边三角形ABC中,AB边上的高CM=
3
a

而三角形PMC为直角三角形,
故面积为S△PMC=
1
2
CM•PM=
1
2
2
a•
3
a
=
6
2
a2

S△MBC=
1
2
S△ABC=
3
2
a2

a•
3
2
a2=hB
6
2
a2

hB=
2
2
a

所以直线BC与平面PMC所成角的正弦值sinθ=
hB
BC
=
2
2
a
2a
=
2
4

所以余弦值为cosθ=
1-sin2θ
=
1-(
2
4
)2
=
14
4
点评:本题考查了面面垂直的判定,考查了直线和平面所成的角,训练了等积法,求解直线和平面所成角,可通过求平面的斜线上的点到平面的距离,然后用点到平面的距离比上该点到斜足的距离得到线面角的正弦值.此题是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网