题目内容
【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用
A.一次函数B.二次函数
C.指数型函数D.对数型函数
【答案】D
【解析】
分别分析一次函数、二次函数、指数型函数、对数型函数单调性以及其变化快慢结合题意即可得结果.
根据基本初等函数的图象与性质可知,一次函数增长的速度不变,不满足题意;要满足调整后初期利润增长迅速,如果是二次函数,则必须开口向上,而此时在二次函数对称轴的右侧增长的速度是越来越快,没有慢下来的可能,不符合要求;要满足调整后初期利润增长迅速,如果是指数函数,则底数必是大于1的数,而此时指数函数增长的速度也是越来越快的,也不满足要求;对于对数函数,当底数大于1时,对数函数增长的速度先快后慢,符合要求,故选D.
练习册系列答案
相关题目
【题目】下面是某市环保局连续30天对空气质量指数的监测数据:
61 76 70 56 81 91 55 91 75 81
88 67 101 103 57 91 77 86 81 83
82 82 64 79 86 85 75 71 49 45
(1)完成下面的频率分布表;
(2)完成下面的频率分布直方图,并写出频率分布直方图中的值;
(3)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间内的概率.
分组 | 频数 | 频率 |
[41,51) | 2 | |
[51,61) | 3 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | ||
[91,101) | 3 | |
[101,111) |