ÌâÄ¿ÄÚÈÝ
9£®ÓÐÏÂÁÐ˵·¨£º¢Ùº¯Êýf£¨x£©=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$ΪÆ溯Êý£»
¢ÚÈô$\frac{cosx}{1-sinx}$=$\frac{1}{2}$£¬Ôò$\frac{cosx}{1+sinx}$=2£»
¢Û¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=f£¨x+2£©£¬µ±x¡Ê[3£¬5]ʱ£¬f£¨x£©=2-|x-4|£¬Ôòf£¨cos3£©£¾f£¨sin3£©£»
¢ÜÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+2ax£¬x¡Ü1}\\{ax+1£¬x£¾1}\end{array}\right.$£¬Èô´æÔÚx1£¬x2¡ÊR£¬ÇÒx1¡Ùx2£¬Ê¹µÃf£¨x1£©=f£¨x2£©£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬1£©¡È£¨2£¬+¡Þ£©£®
ÆäÖÐÕýȷ˵·¨ÓТ٢ڢܣ¨Ð´³öËùÓÐÕýȷ˵·¨µÄÐòºÅ£©
·ÖÎö ¶ÔËĸöÃüÌâ·Ö±ð½øÐÐÅжϣ¬¢ÙÀûÓÃÆ溯ÊýµÄ¶¨Ò壻¢ÚÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ¹Øϵ£»¢ÛÈ·¶¨µ±-1¡Üx¡Ü1ʱ£¬x+4¡Ê[3£¬5]£¬f£¨x£©=f£¨x+4£©=2-|x|£»¢Ü·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º¢Ùº¯ÊýµÄ¶¨ÒåÓòΪ{x|-2¡Üx¡Ü2ÇÒx¡Ù0}£¬f£¨x£©=$\frac{\sqrt{{4-x}^{2}}}{x}$ΪÆ溯Êý£¬ÕýÈ·£»
¢ÚÈô$\frac{cosx}{1-sinx}$=$\frac{1}{2}$£¬Ôò$\frac{cosx}{1+sinx}$=2£¬ÕýÈ·£»
¢Û¡ßf£¨x+2£©=f£¨x£©£¬
¡àº¯Êýf£¨x£©ÊÇÖÜÆÚΪ2µÄÖÜÆÚº¯Êý£¬ÓÖµ±x¡Ê[3£¬5]ʱ£¬f£¨x£©=2-|x-4|£¬
¡àµ±-1¡Üx¡Ü1ʱ£¬x+4¡Ê[3£¬5]£¬¡àf£¨x£©=f£¨x+4£©=2-|x|£¬Ôòf£¨sin3£©=2-sin3£¾2-£¨-cos3£©=f£¨cos3£©£¬´íÎó£»
¢ÜÈô´æÔÚx1£¬x2¡ÊR£¬ÇÒx1¡Ùx2£¬Ê¹µÃf£¨x1£©=f£¨x2£©³ÉÁ¢£¬Ôò˵Ã÷f£¨x£©ÔÚRÉϲ»µ¥µ÷£®
¢Ùµ±a=0ʱ£¬f£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}£¬x¡Ü1}\\{1£¬x£¾1}\end{array}\right.$Âú×ãÌâÒâ
ÆäͼÏóÈçͼËùʾ£¬Âú×ãÌâÒâ
¢Úµ±a£¼0ʱ£¬º¯Êýy=-x2+2axµÄ¶Ô³ÆÖáx=a£¼0£¬ÆäͼÏóÈçͼËùʾ£¬Âú×ãÌâÒâ
¢Ûµ±a£¾0ʱ£¬º¯Êýy=-x2+axµÄ¶Ô³ÆÖáx=a£¾0£¬ÆäͼÏóÈçͼËùʾ£¬
ҪʹµÃf£¨x£©ÔÚRÉϲ»µ¥µ÷
ÔòÖ»Òª¶þ´Îº¯ÊýµÄ¶Ô³ÆÖáx=a£¼1£¬»ò$\left\{\begin{array}{l}{a¡Ý1}\\{-1+2a£¾a+1}\end{array}\right.$£®
¡à0£¼a£¼1»òa£¾2£¬
×ۺϵãºaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬1£©¡È£¨2£¬+¡Þ£©£¬¹ÊÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÖªÊ¶×ÛºÏÐÔÇ¿£®
A£® | £¨-¡Þ£¬-6£© | B£® | £¨-¡Þ£¬-6] | C£® | £¨-6£¬+¡Þ£© | D£® | [-6£¬+¡Þ£© |
A£® | £¨-¡Þ£¬$\frac{3}{2}$] | B£® | £¨-¡Þ£¬1] | C£® | £¨0£¬$\frac{9}{2}$£© | D£® | £¨$\frac{1}{2}$£¬$\frac{9}{2}$] |