题目内容
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且sinA+cosA=2.
(Ⅰ)求角A的大小;
(Ⅱ)现给出三个条件:①a=2;②B=45°;③c= .试从中选出两个可以确△ABC的条件,写出你的选择,并以此为依据求△ABC的面积.(只写出一个方案即可)
【答案】(Ⅰ)(Ⅱ) 选择①②,
【解答】解:(Ⅰ)依题意得2sin(A+)=2,即sin(A+)=1,
∵0<A<π,
∴<A+<,
∴A+=,
∴A=.
(Ⅱ)选择①②由正弦定理=,得b=sinB=2,
∵A+B+C=π,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=+,
∴S=absinC=×2×2×=+1.
【解析】试题分析:(1)根据题目条件,利用辅助角公式,再结合是三角形的内角,即可求出的大小;(2)根据(1)的结论,利用条件①, ②,并结合正弦定理,即可求出边,进而可求出边和角,从而可确定,并可以求得其面积.
试题解析:(1)由,得
因为,所以,
所以,即
(2)方案一:选①和②
由正弦定理得,
又,
的面积为
方案二:选①和③
由余弦定理得,
则,
解得,于是
的面积为
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为 , .
【题目】某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:
月份 | 1月份 | 2月份 | 3月份 | 4月份 |
收购价格(元/斤) | 6 | 7 | 6 | 5 |
养殖成本(元/斤) | 3 | 4 | 4.6 | 5 |
现打算从以下两个函数模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,﹣π<φ<π),
②y=log2(x+a)+b
中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在8月和9月有没有可能亏损?