题目内容

如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°且
AB
AC
=50

(I)求sin∠BAD的值;
(II)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求
S△ABD
S△BCD
的值.
分析:(I)首先在Rt△ABC中利用勾股定理求出AC=10,并且得出∠CAD的正弦、余弦,再结合AB=13且
AB
AC
=50
,计算出∠BAC的正弦、余弦,最后利用两角和的正弦公式,可以求出sin∠BAD的值;
(II)根据正弦定理的面积公式,结合(I)中的数据分别求出三角形BAD、三角形BAC、三角形ACD的面积,最后求出三角形BCD,最后可以得到所要的两个三角形的面积的比值.
解答:解:(I)在Rt△ADC中,AD=8,CD=6,
则AC=10,cos∠CAD=
4
5
,sin∠CAD=
3
5
…(1分)
又∵
AB
AC
=50,AB=13
∴cos∠BAC=
AB
AC
|
AB
 || 
AC
|
=
5
13
…(2分)
∵0<∠BAC<180°,
∴sin∠BAC=
12
13
…(4分)
∴sin∠BAD=sin(∠BAC+∠CAD)
=sin∠BACcos∠CAD+cos∠BACsin∠CAD=
63
65
…(6分)
(II)根据正弦定理的面积公式,可得
三角形BAD的面积为S△BAD=
1
2
AB•ADsin∠BAD=
252
5
…(8分)
同理,三角形ABC与三角形ACD的面积分别为:
S△BAC=
1
2
AB•ACsin∠BAC=60,S△ACD
=24…(10分)
则S△BCD=S△ABC+S△ACD-S△BAD=
168
5

S△ABD
S△BCD
=
3
2
…(12分)
点评:本题着重考查了向量在几何中的应用,属于中档题.解题过程中同时运用了正弦定理的面积公式和向量数量积的公式,是高考中的常考知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网