题目内容
过点的直线与椭圆 交于两点,线段的中点为,设直线的斜率为直线的斜率为,则的值为 ( )
A . B. C. D .
D
【解析】
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出的坐标及定值;若不存在,请说明理由。
已知椭圆的方程为,点的坐标满足过点的直线与椭圆交于、两点,点为线段的中点,求:
(1)点的轨迹方程;
(2)点的轨迹与坐标轴的交点的个数.
已知椭圆:的离心率为,右焦点为,右顶点在圆:上.
(Ⅰ)求椭圆和圆的方程;
(Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.
设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1) 求椭圆方程.
(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.
(本小题满分14分)
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知过点的直线与椭圆交于,两点.
(ⅰ)若直线垂直于轴,求的大小;
(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.