题目内容

(2009•崇明县二模)对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1;对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);设A0是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).如果数列A0为4,2,1,则数列A1
A2为3,3,1
A2为3,3,1
分析:由题设条件知A1=T2(T1(A0))=T2(T1(4,2,1))=T2(3,3,1,0)=(3,3,1).
解答:解:∵T1(A):n,a1-1,a2-1,…,an-1,
T2(B):将数列B各项从大到小排列,然后去掉所有为零的项,
Ak+1=T2(T1(Ak))(k=0,1,2,…),
数列A0为4,2,1,
∴A1=T2(T1(A0))
=T2(T1(4,2,1))
=T2(3,3,1,0)
=(3,3,1)
故答案为:(3,3,1).
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网