题目内容
(2009•崇明县二模)在等差数列{an}中,通项an=6n-5(n∈N*),且a1+a2+a3+…+an=an2+bn则
=
.
lim |
n→∞ |
an-2bn |
2an+bn |
1 |
2 |
1 |
2 |
分析:由项an=6n-5可知数列的公差d=6,首项为1可得a1+a2+…+an=
=3n2-2n,从而可得a=3,b=-2,代入可得,
=
=
,从而可求
n(1+6n-5) |
2 |
lim |
n→∞ |
an-2bn |
2an+bn |
lim |
n→∞ |
3n-2(-2)n |
2•3n+(-2)n |
lim |
n→∞ |
1-2(-
| ||
2+(-
|
解答:解:由项an=6n-5可知数列的公差d=6,首项为1
∴a1+a2+…+an=
=3n2-2n
∴a=3,b=-2
∴
=
=
=
故答案为:
∴a1+a2+…+an=
n(1+6n-5) |
2 |
∴a=3,b=-2
∴
lim |
n→∞ |
an-2bn |
2an+bn |
lim |
n→∞ |
3n-2(-2)n |
2•3n+(-2)n |
lim |
n→∞ |
1-2(-
| ||
2+(-
|
1 |
2 |
故答案为:
1 |
2 |
点评:本题主要考查了等差数列的求和公式,数列极限的求解,属于公式的简单应用.解题的关键是熟练掌握并能灵活利用等差数列是知识.
练习册系列答案
相关题目