题目内容
△ABC的外心为O,AB=2,AC=3,BC=
,则
•
等于( )
7 |
AO |
BC |
分析:可得
=
=
(
+
),故
•
=
(
+
)•(
-
),代入数值可得.
AO |
2 |
3 |
AD |
1 |
3 |
AB |
AC |
AO |
BC |
1 |
3 |
AB |
AC |
AC |
AB |
解答:解:∵△ABC的外心为O,延长AO,交BC于D,则D为BC中点,
∴
=
=
×
(
+
)=
(
+
),
故
•
=
(
+
)•(
-
)
=
(
2-
2)=
(32-22)=
故答案为D
∴
AO |
2 |
3 |
AD |
2 |
3 |
1 |
2 |
AB |
AC |
1 |
3 |
AB |
AC |
故
AO |
BC |
1 |
3 |
AB |
AC |
AC |
AB |
=
1 |
3 |
AC |
AB |
1 |
3 |
5 |
3 |
故答案为D
点评:本题考查平面向量数量积的运算,属中档题.
练习册系列答案
相关题目