题目内容

【题目】已知f(x)=2|x+1|﹣|x﹣1|.
(1)画出函数f(x)的图象;
(2)解不等式|f(x)|>1.

【答案】
(1)解:当x≥1时,f(x)=2(x+1)﹣(x﹣1)=x+3;

当﹣1<x<1时,f(x)=2(x+1)﹣(1﹣x)=3x+1;

当x≤﹣1时,f(x)=﹣2(x+1)+(x﹣1)=﹣x﹣3,

所以


(2)解:根据图象可得|f(x)|=1时,x=﹣4或﹣1或 或0,

所以|f(x)|>1的解集为


【解析】(1)确定分段函数,即可画出函数f(x)的图象;(2)根据图象可得|f(x)|=1时,x=﹣4或﹣1或 或0,即可解不等式|f(x)|>1.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

【题目】已知函数f(x)满足f(xy)=f(xf(y),且f(1)=.

(1)nN,求f(n)的表达式;

(2)annf(n),nN,求证:a1a2+…+an<2.

【答案】(1)(2)见解析

【解析】

(1)利用f(x+y)=f(x)f(y)(x,yR)通过令x=n,y=1,说明{f(n)}是以f(1)=为首项,公比为的等比数列求出;(2)利用(1)求出an=nf(n)的表达式,利用错位相减法求出数列的前n项和,即可说明不等式成立.

(1)解:f(n)=f[(n-1)+1]

f(n-1)·f(1)=f(n-1).

∴当n≥2时,.

f(1)=

∴数列{f(n)}是首项为,公比为的等比数列,

f(n)=f(1)·()n1=()n.

(2)证明(1)可知

ann·()nn·

Sna1a2+…+an

Sn+2×+3×+…+(n-1)·n·

Sn+2×+…+(n-2)·+(n-1)·n·.

②得

Sn+…+n·

=1-

Sn=2-<2.

a1a2+…+an<2.

【点睛】

本题考查数列与函数的关系,数列通项公式的求法和的求法,考查不等式的证明,裂项法与错位相减法的应用,数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.

型】解答
束】
22

【题目】设数列{an}的前n项和为Sn.已知a1a (a≠3),an1Sn+3nnN.

(1)bnSn-3n,求数列{bn}的通项公式;

(2)an1annN,求a的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网