题目内容
【题目】在实数集R中定义一种运算“⊙”,具有性质:①对任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③对任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)﹣2c,则函数f(x)=x⊙ 的最小值是( )
A.2
B.3
C.
D.
【答案】B
【解析】解:根据题意,得 f(x)=x⊙ =(x⊙ )⊙0=0⊙(x )+(x⊙0)+( ⊙0)﹣2×0=1+x+
即f(x)=1+x+ ,
∵x>0,可得x+ ≥2,当且仅当x=1时等号成立,由此可得函数f(x)的最小值为f(1)=3.
故选:B
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).
练习册系列答案
相关题目