题目内容

已知为偶函数,曲线过点(2,5), .
(1)若曲线有斜率为0的切线,求实数的取值范围;
(2)若当时函数取得极值,确定的单调区间.

(1) (2)的单调递增区间,的单调递增区间。

解析试题分析:(1) 为偶函数,故对,总有,易得
又曲线过点(2,5),得,得
.
曲线有斜率为0的切线,故有实数解.此时有
,解得
(2)因时函数取得极值,故有,解得
,令,得.
 
时,
时,
从而的单调递增区间,的单调递增区间。
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网