搜索
题目内容
已知
是直线
被椭圆
所截得的线段的中点,则直线
的方程是( )
A.
B.
C.
D.
试题答案
相关练习册答案
D
试题分析:利用“点差法”即可得出直线
的斜率,即设直线
与椭圆相交于两点
,代入椭圆方程得
,两式相减得
,由
为
两点的中点可知
代入上式可求直线
的斜率,然后利用点斜式即可得出方程.
练习册系列答案
假期生活暑假方圆电子音像出版社系列答案
新课堂假期生活暑假用书系列答案
假期作业黄山书社系列答案
暑假习训系列答案
欢乐谷欢乐暑假系列答案
BEST学习丛书提升训练暑假湖南师范大学出版社系列答案
轻松学习暑假作业系列答案
世超金典假期乐园系列答案
名师点拨组合阅读训练系列答案
名校1号快乐暑假学年总复习系列答案
相关题目
已知椭圆
的离心率为
,过
的左焦点
的直线
被圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设
的右焦点为
,在圆
上是否存在点
,满足
,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
设椭圆
的左、右焦点分别为
,,右顶点为A,上顶点为B.已知
=
.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点
,经过点
的直线
与该圆相切与点M,
=
.求椭圆的方程.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆
过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与椭圆交于两不同点
、
.
(1)求椭圆C的方程;
(2) 当
时,求
面积的最大值;
(3) 若直线
、
、
的斜率依次成等比数列,求直线
的斜率
.
若直线mx+ny=4与⊙O:x
2
+y
2
=4没有交点,则过点P(m,n)的直线与椭圆
+
=1的交点个数是( )
A.至多为1
B.2
C.1
D.0
已知P为椭圆
+
=1上的一点,M,N分别为圆(x+3)
2
+y
2
=1和圆(x-3)
2
+y
2
=4上的点,则|PM|+|PN|的最小值为________.
已知椭圆C:
+
=1(b>0),直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是( )
A.[1,4)
B.[1,+∞)
C.[1,4)∪(4,+∞)
D.(4,+∞)
以椭圆
的长轴端点为焦点、以椭圆焦点为顶点的双曲线方程为 ( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总