题目内容

直线l过抛物线y2=x的焦点F,交抛物线于A,B两点,且点A在x轴上方,若直线l的倾斜角为θ,θ≥
π
4
,则|FA|的取值范围是(  )
A、[
1
4
3
2
B、(
1
4
3
4
+
2
2
]
C、(
1
4
3
2
]
D、(
1
4
,1+
2
2
]
分析:本题考查的是抛物线的性质,由抛物线的性质我们可知,|FA|等于A点到抛物线准线的距离,由抛物线方程y2=x,知准线方程为x=-
1
4
则当θ=
π
4
时,|FA|有最大值,当θ趋近π时,|FA|有一个下界.
解答:解:由抛物线方程y2=x,知准线方程为x=-
1
4

设A点到准线x=-
1
4
的距离为d
则d=|FA|
1
4

θ=
π
4
时,d有最大值,此时d=1+
2
2

当θ→π时,不妨令A与O重合,此时d=
1
4

故d∈(
1
4
,1+
2
2
]
即|FA|∈(
1
4
,1+
2
2
]
故选D
点评:重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网