题目内容
设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
A、y2=±4x | B、y2=4x | C、y2=±8x | D、y2=8x |
分析:先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得.
解答:解:抛物线y2=ax(a≠0)的焦点F坐标为(
,0),
则直线l的方程为y=2(x-
),
它与y轴的交点为A(0,-
),
所以△OAF的面积为
|
|•|
|=4,
解得a=±8.
所以抛物线方程为y2=±8x,
故选C.
a |
4 |
则直线l的方程为y=2(x-
a |
4 |
它与y轴的交点为A(0,-
a |
2 |
所以△OAF的面积为
1 |
2 |
a |
4 |
a |
2 |
解得a=±8.
所以抛物线方程为y2=±8x,
故选C.
点评:本题主要考查了抛物线的标准方程,点斜式求直线方程等.考查学生的数形结合的思想的运用和基础知识的灵活运用.
练习册系列答案
相关题目