题目内容

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且sin2C+$\sqrt{3}$cos(A+B)=0
(1)若a=4,c=$\sqrt{13}$,求△ABC的面积;
(2)若A=$\frac{π}{3}$,cosB>cosC,求$\overrightarrow{AB}•\overrightarrow{BC}-2\overrightarrow{BC}•\overrightarrow{CA}-3\overrightarrow{CA}•\overrightarrow{AB}$的值.

分析 (1)先化简条件求出C的大小,结合三角形的面积公式即可求出△ABC的面积;
(2)由A=$\frac{π}{3}$,cosB>cosC,求出C的大小,结合向量的数量积公式进行化简即可求$\overrightarrow{AB}•\overrightarrow{BC}-2\overrightarrow{BC}•\overrightarrow{CA}-3\overrightarrow{CA}•\overrightarrow{AB}$的值.

解答 解:(1)∵sin2C+$\sqrt{3}$cos(A+B)=0
∴2sinCcosC-$\sqrt{3}$cosC=0,
即cosC(2sinC-$\sqrt{3}$)=0,
即cosC=0,或sinC=$\frac{\sqrt{3}}{2}$
即C=$\frac{π}{2}$或C=$\frac{π}{3}$或C=$\frac{2π}{3}$,
∵a=4,c=$\sqrt{13}$,
∴a>c,
即C不是最大值,
则C=$\frac{π}{3}$,
则c2=b2+a2-2abcos$\frac{π}{3}$,
即13=16+b2-2b×$4×\frac{1}{2}$,
即b2-4b+3=0,
解得b=1或b=3,
若b=1,则三角形的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×4×1×\frac{\sqrt{3}}{2}$=$\sqrt{3}$
若b=3,则三角形的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×4×3×\frac{\sqrt{3}}{2}$=3$\sqrt{3}$;
(2)由(1)知C=$\frac{π}{2}$或C=$\frac{π}{3}$或C=$\frac{2π}{3}$,
若A=$\frac{π}{3}$,
则C=$\frac{2π}{3}$不成立,舍去,
∵cosB>cosC,
∴B<C,
则C>$\frac{π}{3}$,
∴C=$\frac{π}{2}$,
即三角形为直角三角形.
则b=$\frac{1}{2}$c,a=$\frac{\sqrt{3}}{2}$c,
则$\overrightarrow{AB}•\overrightarrow{BC}-2\overrightarrow{BC}•\overrightarrow{CA}-3\overrightarrow{CA}•\overrightarrow{AB}$=accos150°-0-3bccos120°=$-\frac{\sqrt{3}}{2}$ac+$\frac{3}{2}$bc=-$\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}$c2+$\frac{3}{2}$×$\frac{1}{2}$c2=$-\frac{3}{4}$c2+$\frac{3}{4}$c2=0

点评 本题主要考查向量数量积的应用,根据条件求出C的大小是解决本题的关键.考查学生的计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网