题目内容
设.
(1)若在
上存在单调递增区间,求
的取值范围;
(2)当时,
在
上的最小值为
,求
在该区间上
的最大值.
解:(1)在
上存在单调递增区间,即存在某个子区间
使得
.由
,
由于导函数在区间
上单调递减,则只需
即可。
由解得
,
所以 当时,
在
上存在单调递增区间. ……………6分
(2)令,得两根
,
.
所以在
,
上单调递减,在
上单调递增…………8分
当时,有
,所以
在
上的最大值为
又,即
……………10分
所以在
上的最小值为
,得
,
,
从而在
上的最大值为
.
解析
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目