题目内容

【题目】设函数

1)当时,求函数在点处的切线方程;

2)若函数存在两个极值点

①求实数的范围;

②证明:.

【答案】1;(2,证明详见解析.

【解析】

试题本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、利用导数求曲线的切线方程等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将代入,对求导,切点的纵坐标为,斜率为,利用点斜式写出切线方程;第二问,对求导,令,将函数存在两个极值点,转化为方程有两个不同的正根,利用二次函数的图象分析列出不等式,解出a的取值范围;对求导,求出的根,得到的表达式,构造函数,利用导数判断函数的单调性,求出最小值,即证明了结论.

试题解析:(1)当a2时,

,所以切线方程为4

2),令,得

函数有两个极值点等价于方程有两个不同的正根,

所以

所以函数有两个极值点,则

,得,则

在区间上递减,

所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网