题目内容
若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出四个函数f1(x)=2log2x,f2(x)=log2(x+2),f3(x)=(log2x)2,f4(x)=log2(2x),则“同形”函数是
A.
f1(x)与f2(x)
B.
f2(x)与f3(x)
C.
f1(x)与f4(x)
D.
f2(x)与f4(x)
已知函数f(x)=2x3-3x.
(1)求f(x)在区间[-2,1]上的最大值;
(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;
(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)
设F1,F2分别是椭圆E:的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|BF1|.
(1)若|AB|=4,△ABF2的周长为16,求|AF2|;
(2)若,求椭圆E的离心率.
已知向量a=(sinx,-1),b=(cosx,-),函数f(x)=(a+b)·a-2.
(Ⅰ)求函数f(x)的最小正周期T;
(Ⅱ)已知a、b、c分别为△ABC内角A、B、C的对边,其中A为锐角,且f(A)=1,求A,b和△ABC的面积S.
已知函数f(x)=,则f[f(-4)]=
-4
4
-
设P是△ABC内任意一点,S△ABC表示△ABC的面积,,定义f(P)=(λ1,λ2,λ3),若G是△ABC的重心,,则
点Q在△GAB内
点Q在△GBC
点Q在△GCA
点Q与点G重合
如图,在正三棱柱ABC-DEF中,AB=2,AD=1.P是CF的延长线上一点,FP=t.过A,B,P三点的平面交FD于M,交FE于N.
(Ⅰ)求证:MN∥平面CDE;
(Ⅱ)当平面PAB⊥平面CDE时,求t的值.
已知函数f(x)=asinx+bx3+5,且f(1)=3,则f(-1)=________.
若双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,点P是第一象限内双曲线上的点.若直线PA、PB的倾斜角分别为α,β,且β=mα(m>1),那么α的值是