题目内容
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:∥平面;
(2)求异面直线与所成角的余弦值.
(1)证明见解析;(2).
解析试题分析:(1)设BC1与CB1交于点O,连接OD,利用三角形中位线性质,证明OD∥AC1,利用线面平行的判定,可得AC1∥平面CDB1;(2)过C作CE⊥AB于E,连接C1E,证明∠CEC1为二面角C1-AB-C的平面角,从而可求二面角C1-AB-C的余弦值.
试题解析:(1)证明:设BC1与CB1交于点O,则O为BC1的中点,
在△ABC1中,连接OD,
∵D,O分别为AB,BC1的中点,
∴OD为△ABC1的中位线,
∴OD∥AC1,
又∵AC1Ú平面CDB1,OD?平面CDB1,
∴AC1∥平面CDB1;
(2)解:过C作CE⊥AB于E,连接C1E,
∵CC1⊥底面ABC,
∴C1E⊥AB,
∴∠CEC1为二面角C1-AB-C的平面角,
在△ABC中,AC=3,BC=4,AB=5,
∴CE=,
在Rt△CC1E中,tan∠C1EC=4:=,
∴cos∠C1EC=,
∴二面角C1-AB-C的余弦值为.
考点: 1.直线与平面平行的判定;2.二面角的平面角及求法.
练习册系列答案
相关题目