题目内容
已知tan(α+
)=-3,α∈(0,
).
(1)求tanα的值;
(2)求sin(2α-
)的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856273396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856289421.png)
(1)求tanα的值;
(2)求sin(2α-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856320413.png)
(1)2 (2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856335604.png)
试题分析:(1)由tan(α+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856273396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856382689.png)
解得tanα=2.
(2)由tanα=2,α∈(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856289421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856507892.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856523386.png)
因此sin2α=2sinαcosα=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856554346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856585369.png)
sin(2α-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856320413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856320413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013856320413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240138566471064.png)
点评:主要是考查了二倍角公式以及两角和差的公式的运用,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容