题目内容
如图,
=
,
=
,且BC⊥OA于C,设
=λ
,则λ等于( )
OA |
a |
OB |
b |
OC |
a |
分析:由
=
,
=
,
=λ
,知
=
-
=
-λ
,由BC⊥OA于C,知
•
=(
-λ
)•
=
•
-λ
2=0,由此能求出λ=
.
OA |
a |
OB |
b |
OC |
a |
CB |
OB |
OC |
b |
a |
CB |
OA |
b |
a |
a |
=
a |
b |
a |
| ||||
|
|
解答:解:∵
=
,
=
,
=λ
,
∴
=
-
=
-λ
,
∵BC⊥OA于C,
∴
•
=(
-λ
)•
=
•
-λ
2=0,
∴λ=
.
故选A.
OA |
a |
OB |
b |
OC |
a |
∴
CB |
OB |
OC |
b |
a |
∵BC⊥OA于C,
∴
CB |
OA |
b |
a |
a |
=
a |
b |
a |
∴λ=
| ||||
|
|
故选A.
点评:本题考查向量在几何中的应用,解题时要认真审题,仔细解答,注意平面向量的数量积的灵活运用.
练习册系列答案
相关题目
如图所示,在△OAB中,OA>OB,OC=OB,设
=
,
=
,若
=λ•
,则实数λ的值为( )
OA |
a |
OB |
b |
AC |
AB |
A、
| ||||||||||||
B、
| ||||||||||||
C、
| ||||||||||||
D、
|