题目内容

14.已知等比数列{an}的各项均为正数,且2a1,$\frac{1}{2}$,3a2成等差数列.a2,$\frac{1}{3}$a3,a6成等比数列;
(I)求数列{an}的通项公式;
(Ⅱ)已知bn=log3$\frac{1}{{a}_{n}}$,记cn=an•bn,数列{cn}的前n项和为Tn,求Tn

分析 (I)记数列{an}的首项为a1,公比为q,从而可得2a1+3•a1q=2×$\frac{1}{2}$;(a1q)(a1q5)=($\frac{1}{3}$a1q22;从而求通项公式;
(Ⅱ)化简bn=log3$\frac{1}{{a}_{n}}$=log33n=n,cn=an•bn=n$\frac{1}{{3}^{n}}$;根据通项公式可知利用错位相减法求和.

解答 解:(I)记数列{an}的首项为a1,公比为q,
∵2a1,$\frac{1}{2}$,3a2成等差数列,
∴2a1+3•a1q=2×$\frac{1}{2}$;
∵a2,$\frac{1}{3}$a3,a6成等比数列;
∴(a1q)(a1q5)=($\frac{1}{3}$a1q22
解得,a1=$\frac{1}{3}$,q=$\frac{1}{3}$;
故an=$\frac{1}{{3}^{n}}$;
(Ⅱ)bn=log3$\frac{1}{{a}_{n}}$=log33n=n,
故cn=an•bn=n$\frac{1}{{3}^{n}}$;
Tn=$\frac{1}{3}$+2$\frac{1}{{3}^{2}}$+3$\frac{1}{{3}^{3}}$+…+n$\frac{1}{{3}^{n}}$;
3Tn=1+2$\frac{1}{3}$+3$\frac{1}{{3}^{2}}$+…+n$\frac{1}{{3}^{n-1}}$;
2Tn=1+$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n-1}}$-n$\frac{1}{{3}^{n}}$
=$\frac{1(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-n$\frac{1}{{3}^{n}}$,
故Tn=$\frac{3(1-\frac{1}{{3}^{n}})}{4}$-$\frac{1}{2}$n$\frac{1}{{3}^{n}}$.

点评 本题考查了等差数列与等比数列的性质应用及错位相减法的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网