ÌâÄ¿ÄÚÈÝ
15£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬µãA£¨-2£¬0£©£¬B£¨2£¬0£©£¬Æ½ÃæÄÚÈÎÒâÒ»µãPÂú×㣺ֱÏßPAµÄбÂÊk1£¬Ö±ÏßPBµÄбÂÊk2£¬k1k2=-$\frac{3}{4}$£¬µãPµÄ¹ì¼£ÎªÇúÏßC1£¬Ë«ÇúÏßC2ÒÔÇúÏßC1µÄÉÏÏÂÁ½¶¥µãM¡¢NΪ¶¥µã£¬QÊÇË«ÇúÏßC2Éϲ»Í¬ÓÚ¶¥µãµÄÈÎÒâÒ»µã£¬Ö±ÏßQMµÄбÂÊΪk3£¬Ö±ÏßQNµÄбÂÊk4£®£¨1£©ÇóÇúÏßC1µÄ·½³Ì£»
£¨2£©Èç¹ûk1k2+k3k4¡Ý0£¬·Ö±ðÇóË«ÇúÏßC2µÄÁ½Ìõ½¥½üÏßÇãб½ÇµÄÈ¡Öµ·¶Î§£»£¨Àí£©
£¨3£©Èç¹ûk1k2+k3k4¡Ý0£¬·Ö±ðÇóË«ÇúÏßC2µÄ½¹¾àµÄÈ¡Öµ·¶Î§£®£¨ÎÄ£©
·ÖÎö £¨1£©ÉèP£¨x£¬y£©£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ÇúÏßC1µÄ·½³Ì£»
£¨2£©ÉèË«ÇúÏß·½³ÌΪ$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{{b}^{2}}$=1£¨b£¾0£©£¬Q£¨x0£¬y0£©ÔÚË«ÇúÏßÉÏ£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬½áºÏk1k2+k3k4¡Ý0ÇóµÃbµÄ·¶Î§£¬¼´¿ÉµÃµ½Ë«ÇúÏßC2µÄÁ½½¥½üÏßµÄбÂʵķ¶Î§£¬½øÒ»²½ÇóµÃË«ÇúÏßC2µÄÁ½Ìõ½¥½üÏßÇãб½ÇµÄÈ¡Öµ·¶Î§£»
£¨3£©ÓÉ£¨2£©ÖÐÇóµÃµÄbµÄ·¶Î§£¬½áºÏ½¹¾àΪ2$\sqrt{3+{b}^{2}}$ÇóµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÉèP£¨x£¬y£©£¬
Ôò${k}_{1}{k}_{2}=\frac{y}{x+2}•\frac{y}{x-2}=-\frac{3}{4}$£¬
¡àÇúÏßC1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¨x¡Ù¡À2£©£»
£¨2£©ÉèË«ÇúÏß·½³ÌΪ$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{{b}^{2}}$=1£¨b£¾0£©£¬
Q£¨x0£¬y0£©ÔÚË«ÇúÏßÉÏ£¬¡à$\frac{{{y}_{0}}^{2}}{3}-\frac{{{x}_{0}}^{2}}{{b}^{2}}=1$£¨b£¾0£©£¬
¡ßk3k4=$\frac{{y}_{0}-\sqrt{3}}{{x}_{0}}•\frac{{y}_{0}+\sqrt{3}}{{x}_{0}}=\frac{{{y}_{0}}^{2}-3}{{{x}_{0}}^{2}}$=$\frac{3}{{b}^{2}}$£¬
¡à-$\frac{3}{4}+\frac{3}{{b}^{2}}$¡Ý0£¬¡à0£¼b¡Ü2£¬
¡ßË«ÇúÏßµÄÁ½Ìõ½¥½üÏßµÄбÂÊ·Ö±ðΪ$\frac{\sqrt{3}}{b}¡¢-\frac{\sqrt{3}}{b}$£¬
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏßµÄбÂʵķ¶Î§·Ö±ðΪ[$\frac{\sqrt{3}}{2}$£¬+¡Þ£©¡¢£¨-¡Þ£¬-$\frac{\sqrt{3}}{2}$]£®
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏßµÄÇãб½ÇµÄ·¶Î§Îª[$arctan\frac{\sqrt{3}}{2}$£¬$\frac{¦Ð}{2}$£©¡¢£¨$\frac{¦Ð}{2}$£¬$¦Ð-arctan\frac{\sqrt{3}}{2}$]£»
£¨3£©ÓÉË«ÇúÏßC2µÄ½¹¾àΪ2$\sqrt{3+{b}^{2}}$£¬
ÓÖ0£¼b¡Ü2£¬
¡àË«ÇúÏßC2µÄ½¹¾àµÄÈ¡Öµ·¶Î§¡Ê£¨2$\sqrt{3}$£¬2$\sqrt{7}$]£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬Ö÷Òª¿¼²éÍÖÔ²ºÍË«ÇúÏߵķ½³ÌºÍÐÔÖÊ£¬Í¬Ê±¿¼²éÖ±ÏßµÄбÂʺÍÇãб½Ç¼äµÄ¹Øϵ£¬ÊôÓÚÖеµÌ⣮
A£® | 5 | B£® | 0 | C£® | ²»´æÔÚ | D£® | 30 |