题目内容
(本小题满分12分)已知函数f(x)=2x-.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
解:(1)当x<0时,f(x)=0;
当x≥0时,f(x)=2x-.
由条件可知2x-=2,即22x-2·2x-1=0,
解得2x=1±.
∵2x>0,∴x=log2(1+).
(2)当t∈[1,2]时,2t+m≥0,
即m(22t-1)≥-(24t-1).
∵22t-1>0,∴m≥-(22t+1).
∵t∈[1,2],∴-(1+22t)∈[-17,-5],
故m的取值范围是[-5,+∞)
解析
练习册系列答案
相关题目
已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是( )
A. | B. |
C. | D. |