题目内容

设a∈R,函数f(x)=ex+a•e-x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是
3
2
,则切点的横坐标为(  )
A.ln2B.-ln2C.
ln2
2
D.-
ln2
2

对f(x)=ex+a•e-x求导得
f′(x)=ex-ae-x
又f′(x)是奇函数,故
f′(0)=1-a=0
解得a=1,故有
f′(x)=ex-e-x
设切点为(x0,y0),则
f′(x0)=ex0-e-x0=
3
2

ex0=2ex0=-
1
2
(舍去),
得x0=ln2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网