题目内容

我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意均满足,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)给定两个函数:,f2(x)=logax(a>1,x>0).证明:f1(x)∉M,f2(x)∈M.
(3)试利用(2)的结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.
【答案】分析:(1)由题意中所给的定义直接判断f(3)+f(5)与2f(4)大小即可;
(2)对于函数f1(x)∉M可通过举两个反例,说明其不符合所给的定义可取x=1,y=2,对于f2(x)∈M可按定义规则进行证明,任取x,y∈R+,求出利用基本不等式,得到,即可证明出结论;
(3)参照(2)的方法,利用所给的定义及基本不等式作出变化,再判断即可得出所求的最值
解答:解:(1),即f(3)+f(5)≤2f(4)
但3≠5,所以f(3)+f(5)<2f(4)
(若答案写成f(3)+f(5)≤2f(4),扣一分)                        (4分)
(2)①对于,取x=1,y=2,则


所以,f1(x)∉M.(6分)
②对于f2(x)=logax(a>1,x>0)任取x,y∈R+,则
,而函数f2(x)=logax(a>1,x>0)是增函数
,即
,即f2(x)∈M.(10分)
(3)设x=2m,y=2n,则m=log2x,n=log2y,且m+n=1.
由(2)知:函数g(x)=log2x满足
,即,则m+n≤-2(14分)
当且仅当x=y,即,即m=n=-1时,m+n有最大值为-2.(16分)
点评:本题考查不等式的综合题,考查了比较大小,基本不等式求最值的运用,对数的运算性质,解答本题关键是理解定义及基本不等式的运用规则,本题考查了理解能力及判断推理的能力,考查了转化的思想,本题综合性强,注意总结本题的做题的规律
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网