题目内容
2.在平面内点O是直线AB外一点,点C在直线AB上,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ=1;类似地,如果点O是空间内任一点,点A,B,C,D中任意三点均不共线,并且这四点在同一平面内,若$\overrightarrow{OD}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z等于( )A. | 1 | B. | -1 | C. | 2 | D. | -2 |
分析 根据平面向量和空间向量的基本定理,即可类比推出正确的结论.
解答 解:根据平面向量的基本定理得,
A、B、C三点在一条直线上,且$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ=1;
同理,根据空间向量的基本定理得,
A、B、C、D四点在同一平面内,且$\overrightarrow{OD}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=1.
故选:A.
点评 本题考查了类比推理的应用问题,也考查了平面向量与空间向量的应用问题,是基础题目.
练习册系列答案
相关题目
14.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,只要将$y=cos(\frac{π}{2}-x),(x∈R)$的图象上所有的点( )
A. | 向左平移$\frac{π}{6}$个单位长度,再把所得图象各点的横坐标伸长到原来的2倍,纵坐标不变 | |
B. | 向左平移$\frac{π}{6}$个单位长度,再把所得图象各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 | |
C. | 向左平移$\frac{π}{3}$个单位长度,再把所得图象各点的横坐标伸长到原来的2倍,纵坐标不变 | |
D. | 向左平移$\frac{π}{3}$个单位长度,再把所得 图象各点的横 坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 |