题目内容
【题目】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(1)试求常数a、b、c的值;
(2)试判断x=±1是函数的极小值还是极大值,并说明理由.
【答案】略
【解析】
试题分析由f′(1)=0, f′(-1)=0, f(-1)=1,联立得a=.根据函数的单调性确定极值情况可求得结果.
试题解析:(1)f′(x)=3ax2+2bx+c
∵x=±1是函数f(x)的极值点,
∴x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.
① |
由根与系数的关系,得又f(1)=-1,∴a+b+c=-1, ③
由①②③解得a=,
(2)f(x)=x3-x,
∴f′(x)=x2-=(x-1)(x+1)
当x<-1或x>1时,f′(x)>0
当-1<x<1时,f′(x)<0
∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.
∴当x=-1时,函数取得极大值f(-1)=1,
当x=1时,函数取得极小值f(1)=-1.
【题目】世界互联网大会是由中国倡导并每年在浙江省嘉兴市桐乡乌镇举办的世界性互联网盛会,大会旨在搭建中国与世界互联互通的国际平台和国际互联网共享共治的中国平台,让各国在争议中求共识在共识中谋合作在合作中创共赢.2019年10月20日至22日,第六届世界互联网大会如期举行,为了大会顺利召开,组委会特招募了1 000名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄,得到了他们年龄的中位数为34岁,年龄在岁内的人数为15,并根据调查结果画出如图所示的频率分布直方图:
(1)求,的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);
(2)这次大会志愿者主要通过现场报名和登录大会官网报名,即现场和网络两种方式报名调查.这100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能
否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?
男性 | 女性 | 总计 | |
现场报名 | 50 | ||
网络报名 | 31 | ||
总计 | 50 |
参考公式及数据:,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |