题目内容
数列{an}的前n项和Sn=n2-n(n∈N+),
(1)判断数列{an}是否为等差数列,并证明你的结论;
(2)设bn=
,且{bn}的前n项和为Tn,求Tn.
(1)判断数列{an}是否为等差数列,并证明你的结论;
(2)设bn=
1 |
Sn |
(1)数列{an}是等差数列.证明如下:
当n≥2时,an=Sn-Sn-1=2n-2;
当n=1时,a1=S1=0,
∴{an}是首项为0,公差为2的等差数列.
(2)bn=
=
=
=
-
∴Tn=1-
+
-
+
-
+…+
-
+
-
=1-
.
当n≥2时,an=Sn-Sn-1=2n-2;
当n=1时,a1=S1=0,
∴{an}是首项为0,公差为2的等差数列.
(2)bn=
1 |
Sn+1 |
1 |
n2+n |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Tn=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
1 |
n |
1 |
n+1 |
1 |
n+1 |
练习册系列答案
相关题目