题目内容
(本题满分12分)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.
边长为4,体积为.
解析试题分析:由于展开图是,分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.
试题解析:由题意中,,,所以是的中位线,因此是正三角形,且边长为4.
即,三棱锥是边长为2的正四面体
∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于
∴为中点,为的重心,底面
∴,,
【考点】图象的翻折,几何体的体积.
练习册系列答案
相关题目