题目内容
12.解方程组:$\left\{\begin{array}{l}{x+y+z=7}\\{{x}^{2}+{y}^{2}+{z}^{2}=21}\\{xy=8}\end{array}\right.$.分析 把z=7-(x+y),及xy=8代入x2+y2+z2=21,化为x+y=1或x+y=6.联立①$\left\{\begin{array}{l}{x+y=1}\\{xy=8}\end{array}\right.$,或②$\left\{\begin{array}{l}{x+y=6}\\{xy=8}\end{array}\right.$,分别解出即可.
解答 解:把z=7-(x+y),及xy=8代入x2+y2+z2=21,化为x+y=1或x+y=6.
联立①$\left\{\begin{array}{l}{x+y=1}\\{xy=8}\end{array}\right.$,或②$\left\{\begin{array}{l}{x+y=6}\\{xy=8}\end{array}\right.$,
①无解,②解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$.
∴$\left\{\begin{array}{l}{x=2}\\{y=4}\\{x=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=4}\\{y=2}\\{z=1}\end{array}\right.$.
∴原方程组的解为:$\left\{\begin{array}{l}{x=2}\\{y=4}\\{x=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=4}\\{y=2}\\{z=1}\end{array}\right.$.
点评 本题考查了方程组的解法,考查了推理能力与计算能力,属于中档题.