题目内容
已知点F是椭圆的右焦点,过原点的直线交椭圆于点A、P,PF垂直于x轴,直线AF交椭圆于点B,,则该椭圆的离心率=___▲___.
此题考查椭圆的相关性质和直线方程的相关知识,利用结论:若椭圆的方程为,即焦点在轴上,若直线与椭圆相交,被椭圆所截得弦为,其中点设为,则该直线的斜率与该弦的中点与原点的斜率之积为常数,即;求解较简单;
由已知得,,取中点,可知,又因为,所以,又因为,由,
由已知得,,取中点,可知,又因为,所以,又因为,由,
练习册系列答案
相关题目