题目内容
8.求椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离.分析 设出与x-2y+4$\sqrt{2}$=0平行且与椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直线方程为x-2y+m=0,联立直线方程和椭圆方程,由判别式等于0求得m值,把椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离转化为椭圆的两条相切的平行线间的距离得答案.
解答 解:设与x-2y+4$\sqrt{2}$=0平行且与椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直线方程为x-2y+m=0,
联立$\left\{\begin{array}{l}{x-2y+m=0}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得2x2+2mx+m2-16=0.
△=4m2-8(m2-16)=128-4m2=0,解得:m=$±4\sqrt{2}$.
∴直线x-2y+4$\sqrt{2}$=0与椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$相切,
则椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离为d=$\frac{|4\sqrt{2}-(-4\sqrt{2})|}{\sqrt{5}}=\frac{8\sqrt{10}}{5}$.
点评 本题考查椭圆的简单性质,考查了直线和圆锥曲线的关系,体现了数学转化思想方法,是中档题.
练习册系列答案
相关题目
18.下列函数中,在区间(0,1)上为增函数的是( )
| A. | y=sin2x | B. | $y={x^{\frac{3}{2}}}$ | C. | $y={({\frac{1}{3}})^x}$ | D. | y=|log2x| |
19.为了得到函数$y=\sqrt{2}cos3x$的图象,可以将函数y=$\sqrt{2}$cos$\frac{3}{2}$x的图象所有点的( )
| A. | 横坐标伸长到原来的2倍(纵坐标不变)得到 | |
| B. | 横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变)得到 | |
| C. | 纵坐标伸长到原来的2倍(横坐标不变)得到 | |
| D. | 纵坐标缩短到原来的$\frac{1}{2}$(横坐标不变)得到 |