题目内容

【题目】已知集合对于集合的两个非空子集 ,若,则称为集合的一组互斥子集.记集合的所有互斥子集的组数为 (为同一组互斥子集”)

1写出 的值;

2)求

【答案】1 .(2

【解析】试题分析:分别对三种情况研究集合的非空子集,并找出交集为空集的子集对数,得出任意一个元素只能在集合 之一中,则这个元素在集合 中,共有种; 减去为空集的种数和 为空集的种数加1为同一组互斥子集得出.

试题解析:1

2解法一:设集合中有k个元素,

则与集合互斥的非空子集有个.

于是

因为

所以

解法二:任意一个元素只能在集合 之一中,

则这个元素在集合 中,共有种;

其中为空集的种数为 为空集的种数为

所以 均为非空子集的种数为

为同一组互斥子集

所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网