题目内容

设a,b,c分别是△ABC角A,B,C所对的边,sin2A+sin2B-sinAsinB=sin2C,且满足ab=4,则△ABC的面积为
3
3
分析:利用正弦定理化简已知的等式,得到三边的关系式,再利用余弦定理表示出cosC,把得到的三边关系式变形后代入求出cosC的值,根据C为三角形的内角,利用同角三角函数间的基本关系求出sinC的值,由ab及sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:利用正弦定理化简sin2A+sin2B-sinAsinB=sin2C,
得:a2+b2-ab=c2,即a2+b2-c2=ab,
∴根据余弦定理得:cosC=
a2+b2-c2
2ab
=
1
2

∵C为三角形的内角,
∴sinC=
1-cos2C
=
3
2
,又ab=4,
则S△ABC=
1
2
ab•sinC=
3

故答案为:
3
点评:此题考查了正弦、余弦定理,三角形的面积公式,以及同角三角函数间的基本关系,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网