题目内容

【题目】已知函数f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范围.

【答案】
(1)解:f(x)=2 sinxcosx+2cos2x﹣1= sin2x+cos2x=

∵f(B)=1,∴ =1,即sin(2B+ )=

∵B∈(0,π),∴


(2)解:∵ =3,∴cacos =3,解得ac=6.

∴b2=a2+c2﹣2accosB=a2+c2﹣6≥2ac﹣6=6,

解得b

∴b的取值范围是


【解析】(1)利用倍角公式、和差公式可得:f(x)= ,由于f(B)=1,可得 =1,B∈(0,π),即可得出.(2)由 =3,可得ac=6.再利用余弦定理与基本不等式的性质即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网